An Inequality with Constraints II
Leonard Giugiuc, Dan Sitaru
3 December, 2015
For real numbers $a,b,c$ such that $3\gt a\ge 1\ge b, c\ge 0,\;$ and $a+b+c=3,$
$\displaystyle abc+\frac{2}{ab+bc+ca}\ge\frac{5}{a^2+b^2+c^2}.$
Proof
Denote $abc=p$ and $ab+bc+ca=q.\;$ Introduce the polynomial $f(x)=(x-a)(x-b)(x-c).$ From $a\ge 1\ge b, c,$ $f(1)\le 0.$ On the other hand, $f(x)=x^3-3x^2+qx-p$ so that $f(1)=-2+q-p.$ Thus $p\ge q-2.$ Let's consider two cases:
Case 1: $2\le q\le 3.$
We have
$\displaystyle abc+\frac{2}{ab+bc+ca}=p+\frac{2}{q}\ge q-2+\frac{2}{q}.$
Since $a^2+b^2+c^2=9-2q,$ suffice it to show that $\displaystyle q-2+\frac{2}{q}\ge\frac{5}{9-2q}.$ The latter is in turn equivalent to $(3-q)(q-2)(2q-3)\ge 0,$ which is obviously true in this case.
Case 2: $0\lt q\lt 2.$
In this case, $\displaystyle q-2+\frac{2}{q}\ge\frac{2}{q}\gt 1\;$ and $\displaystyle\frac{5}{9-2q}\lt 1,$
which completes the proof.(This was posted at the CutTheKnotMath facebook page.)
- An Inequality for Grade 8
- An Extension of the AM-GM Inequality
- Schur's Inequality
- Newton's and Maclaurin's Inequalities
- Rearrangement Inequality
- Chebyshev Inequality
- A Mathematical Rabbit out of an Algebraic Hat
- An Inequality With an Infinite Series
- An Inequality: 1/2 * 3/4 * 5/6 * ... * 99/100 less than 1/10
- A Low Bound for 1/2 * 3/4 * 5/6 * ... * (2n-1)/2n
- An Inequality: Easier to prove a subtler inequality
- Inequality with Logarithms
- An inequality: 1 + 1/4 + 1/9 + ... less than 2
- Inequality with Harmonic Differences
- An Inequality by Uncommon Induction
- From Triangle Inequality to Inequality in Triangle
- Area Inequality in Triangle II
- An Inequality in Triangle
- Hlawka's Inequality
- An Application of Hlawka's Inequality
- An Inequality in Determinants
- An Application of Schur's Inequality
- An Inequality from Tibet
- Application of Cauchy-Schwarz Inequality
- Area Inequalities in Triangle
- An Inequality from Tibet
- An Inequality with Constraint
- An Inequality with Constraints II
|Contact| |Front page| |Contents| |Algebra| |Store|
Copyright © 1996-2015 Alexander Bogomolny| 49555020 |

