Well, not everything. For example, you can't draw straight lines using a compass. There is no
talking about it. However, you can do everything reasonable. I hope you would find this claim no less
remarkable.
The assertion that every ruler-and-compass construction could be accomplished with a compass is due to Lorenzo Mascheroni (1750-1800) and appeared in his 1797 tractate The Geometry of Compasses.
Interestingly, in 1928 the Danish mathematician Hjelmslev discovered in a bookshop in Copenhagen a book
by G. Mohr titled Euclides Danicus (The Danish Euclid) and published in 1672 in Amsterdam. To his great surprise Hjelmslev found a complete treatment of the Mascheroni result in the first part of the book. For this reason, constructions with compass only are commonly referred to as the Mohr-Mascheroni constructions.
Inspired by Mascheroni's result, Jacob Steiner (1796-1863) tried to prove a similar result for a
straightedge instead of a compass. In his book Geometrical Constructions Using a Straight Line
and a Fixed Circle published in 1833, Steiner was able to prove that given a fixed circle and its center, all the constructions in the plane can be carried out by the straightedge alone. Using only elementary Projective Geometry it
can be shown that the center of the circle is indispensable.
With regard to the Mascheroni's result, instead of checking every single construction in the plane we
agree that such constructions can be accomplished with a sequence of the four basic ones:
- To draw a circle with the given center and radius
- To find the point of intersection of two circles
- To find the points of intersection of a straight line and a circle
- To find a point of intersection of two straight lines
The difficulty obviously lies with the last two problems. In the Geometry of Compass
constructions may be awfully obscure even for simple problems. To avoid complicating the matters it's
always useful to split a problem into a number of simpler steps. A proof to the Mascheroni result will
emerge as a combination of the problems below. (However, not all of the problems are related to the
proof.)
Problems (Use a compass only)
In all problems below a segment AB is given by its end points A and B.
- Construct segments 2, 3, 4, etc. times larger than AB.
- A point C is known to lie outside the straight line AB. Construct a point D symmetric to C with respect to AB.
- A circle is given by its radius R and the center O. Assume O does not lie on AB.
Find the points of intersection of the circle with the segment AB.
- Find a point C such that AC is perpendicular to AB.
- Determine whether three given points A, B, C lie on the same line.
- Given three points A, B and C. C is known to lie outside the straight line AB.
Complete the parallelogram ABCD.
- Let two points A and B belong to a circle with center O. Bisect the two arcs of the circle
defined by the points A and B.
- A circle is given by its radius R and the center O that lies on AB.
Find the points of intersection of the circle with the segment AB.
- Build a square with the side AB.
- Let the quantities a, b, c be defined as the lengths of three given segments. Find x such that
a/b = c/x.
- Find the intersection point of two lines each given by a pair of points - AB and CD, respectively.
- Construct segments 2, 3, 4, etc. times smaller than AB.
- Construct the center of a given circle.
- Bisect a given line AB.
- Construct a Regular Pentagon
References
- R. Courant and H. Robbins, What is Mathematics?, Oxford University Press, 1996
- H. Dorrie, 100 Great Problems Of Elementary Mathematics, Dover Publications, NY, 1965.
- M. Gardner, Mathematical Circus, Vintage Books, NY, 1981
- R. Honsberger, Ingenuity in Mathematics, MAA, New Math Library, 1970
- A. Kostovskii, Geometrical Construction with Compasses Only, Mir Publishers, Moscow, 1986
- G. E. Martin, Geometric Constructions, Springer, 1998
- S. K. Stein, Mathematics: The Man-Made Universe, 3rd edition, Dover, 2000.
